DETERMINATION OF ALLYLIC CHLORINE IN PVC BY A RADIOCHEMICAL METHOD

E. C. BURUIANĂ, V. T. BĂRBÎNȚĂ and A. A. CARACULACU

Institute of Macromolecular Chemistry "Petru Poni", Aleea Gr. Ghica Vodă nr. 41A. Jassy, Romania

(Received 12 May 1976. Revised 10 August 1976)

Abstract—Allylic chlorine in PVC can be determined by isotopic exchange with SOCl₂³⁶. The number of allylic chlorines in PVC is between 0.12 and 0.16 for 100 monomer units. The selective exchange of chlorine in the polymer was verified by experiments with model compounds.

Allylic chlorine in PVC may occur either at chainends as a result of disproportionation [1] or of transfer to monomer [2] or in the chains as a result either of random dehydrochlorination or of copolymerization with acetylenic impurities in the monomer [3]. We now propose a rapid and selective method for determination of allylic chlorine in PVC.

RESULTS AND DISCUSSION

Selective exchange of chlorine with $SOCl_2^{36}$ was verified for PVC micromodels having secondary, tertiary or allylic chlorine. The following compounds were used as models: 3-chloropentane, 3-chloro-3-ethylpentane and 3-chloropentene-1. From this study, exchange of 36 Cl for chlorine bound to tertiary carbon (Cl_T) and between allylic type chlorine (Cl_A) was indicated. It was shown that this reaction did not occur for secondary chlorine (Cl_S). It is thought that the selective exchange is due to fact that structures with Cl_T and Cl_A are in equilibrium with partially ionized structures. To make use of these findings for study of PVC. it was necessary first to examine PVC macromodels with known Cl_A and Cl_T contents. For this purpose, we synthesized copolymers with double

bonds in the chain by copolymerization of vinyl chloride with 4-chloro³⁶-pentine-l [3].

The characteristics of the copolymers are presented in Table 1.

Table 1 shows that the copolymers contain 0.12° o Cl³6 and 0.72° o Cl³6 respectively meaning that the copolymers also have Cl_A contents of 0.12% and 0.72% respectively. If exchange between allylic chlorine and Cl³6 is complete, it should be possible to obtain a copolymer with double radioactivity, indicating that the radioactivity is entirely due to exchange involving Cl_A and not to secondary reactions.

The results for the copolymer with 0.12% Cl_A are presented in Table 2. Increase of the radioactivity (see Table 2) corresponded to a Cl_A content of 0.15%, confirming a quantitative exchange between Cl_A in the copolymer with Cl³⁶. A similar result was found for the copolymer with 0.72% Cl³⁶.

Table 1. Radioactivity of PVC macromodels with Cl_A and Cl_T obtained by copolymerization of vinyl chloride with 4*-chloropentine-1 and 2,4*-dicholoropentene-1

	Comonomer radioactivity					Macromodel radioactivity				
Comonomer	W ₁	B ₁ counts/min	R ₁ counts min	ACl* _(M) counts/g.min	N ₂	B ₂ counts min	R ₂ counts min	.1Cl* _(cop) counts g.min	$\frac{ACl_{(COP)}^*}{ACl_{(M)}^*} \times 100$	
		45	1516			39	96	55		
4*-chloropentine-1	0.09	43	1519	47,717	1.7963	4!	97	55	$Cl_{A}^{\circ} = 0.12$	
		47	1518			40	96			
		27	5820			26	650			
		26	5850			26	653			
4°-chloropentine-l	0.09	26	5849	188,211	0.7995	26	650	1367	$Cl_{\Delta^{0}_{0}} = 0.72$	
		27	5822			26	640			
		26	5845			27	643			
		27	5729			34	965			
		28	5719			34	969			
2,4*-dichloropentene-1	0.2	29	5751	111,826	0.8855	33	965	1853	$Cl_{1}^{\alpha}_{1} = 1.66$	
		28	5762			34				
		29				34				

SOCI36 Polymer after labeling R, 1Clisoci , counts/g.min Weight ACI (con)
counts/g.min Sample W, Content of W_1 , g counts/min counts/min counts/min Cl, and Cl_T counts min 0.8427 53 55 140 182 $Cl_{A/0}^{*0} = 0.15$ 140 0.198 82.893 45 44 9993 478 2 0.3756 29 29 467 2090 $Cl_{T/\alpha}^{*0} = 0.29$

Table 2. Determination of Cl_A and Cl_T contents in the macromodels

^al—copolymer with 0.12% Cl_A obtained by synthesis. 2—copolymer with 1.66% Cl_T obtained by synthesis.

$$\Lambda \text{Cl}_{\text{(cop)}}^{**} = \frac{(R_2 - B_2)}{W_2} \times \frac{100}{\% \text{Cl}}$$

 $ACl_{(SOCl_2^*)}^*$ = specific activity of chlorine in $SOCl_2^*$. Cl_2^* = percentage of Cl_2^* in the $SOCl_2^*$.

 $ACl_{(cop)}^{**}$ = specific activity of chlorine in the copolymer after labelling with SOCl₂.

$$Cl_{A}^{\circ}/_{o}, Cl_{T}^{\circ}/_{o} = \frac{ACl_{(cop)}^{***} + ACl_{(cop)}^{*}}{ACl_{(SOCl_{2}^{*})}^{*}} \times 100$$

%Cl = percentage of chlorine in the copolymer. $ACl_{(cop)}^* = \text{specific activity of chlorine in the copolymer labelled by synthesis.}$ W_1 , $W_2 = \text{weight.}$

 $B_1, B_2 = \text{background}.$

The copolymer obtained by copolymerization of vinyl chloride with 2,4*-dichloropentene-1 was used as PVC macromodel with Cl_T [4]. The characteristics of this copolymer are shown in Table 1.

Table 1 shows that a copolymer with 1.66% Cl³⁶ was obtained, and this must also be the Cl_T content.

As a result of the reaction between the copolymer with 1.66% Cl_T and SOCl₂³⁶, there is an increase of Cl³⁶ (0.29%); results are presented in Table 2. The low content of Cl36 may be due either to the ClT not being labelled in the polymer or to it being lost as a result of dehydrochlorination.

To establish what happened to Cl_T after the polymer was treated with SOCl₂³⁶, a phenolysis reaction was undertaken to determine the labile chlorine content of the polymer [5]. Using the phenolysis, a value of 0.6% for the labile chlorine content was found; this result indicates dehydrochlorination of the copolymer with Cl_T, leading to a product with conjugated double bonds. These data indicate that chlorine in the vicinity of a double bond system is neither labelled with SOCl₂³⁶ nor is phenolysed, but has low reactivity.

We have used several solvents (cyclohexanone, tetrahydrofuran, dichloroethane, tetrachloroethane) for determining the optimum conditions for isotopic exchange between labile chlorine in PVC with SOCl₂³⁶. It has been established that cyclohexanone and tetrahydrofuran are not good solvents for this purpose because of secondary reactions, and that dichloroethane may be used as solvent for PVC labelling at room temperature.

Because the isotopic exchange is complete in 200 hr (Fig. 1), tetrachloroethane was used as solvent for reaction of PVC with SOC136 at 60°; under these conditions, approx. 90% isotopic exchange occurs in 1 hr (Fig. 1).

The results for PVC samples by this isotopic method are presented in Table 3; the allylic chlorine content lies between 0.12-0.16%, in good agreement with results by the u.v. method of phenolysed PVC

The fact that the radioactivity of PVC treated with SOCl₂³⁶ is due to Cl_A labelling and not to a secondary reaction was verified by treating labelled PVC with

Table 3. Determination of allylic chlorine content in PVC

Sample	W. g	B counts/min	R counts/min	ACI _{PVC} , counts/g.min	ACl(SOCIE) counts/g.min	Cl,n,
		54	116			
Turda	0.7753	53	109	132	82,893	0.16
		56	110			
		54	121			
Breon	0.8723	53	115	129	82,893	0.16
		56	117			
		54	98			
Vipla	0.7406	53	101	100	82,893	0.12
		56	90			

$$ACl_{(PVC)}^{*} = \frac{(R - B)}{W} \times \frac{100}{\%Cl}$$
$$Cl_{A}\% = \frac{ACl_{(PVC)}^{*}}{ACl_{(SOC)_{3}}^{*}} \times 100$$

 $ACl_{(PVC)}^*$ = specific activity of chlorine in the PVC after labelling with SOCl₂.

%Cl = percentage of chlorine in the PVC.

W = weight.

B = background

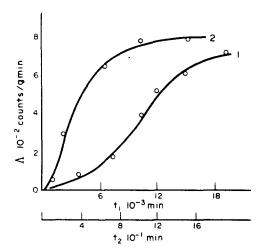


Fig. 1. Isotopic exchange in dichloroethane at 20° (1) and in tetrachloroethane at 60° (2).

unlabelled SOCl₂. Assay of the resulting PVC showed that the residual activity did not exceed 10% of the initial value.

EXPERIMENTAL

Copolymers with Cl_A and Cl_T in the chain were synthesized as previously [3,4]. The copolymers and PVC were labelled thus: 1 g PVC was dissolved in 30 ml tetrachloroethane and 0.3 ml $SOCl_2^{36}$ were added to this solution.

The reaction mixture was stirred for 3 hr at 60°. The samples were reprecipitated from tetrachloroethane-petroleum ether several times to give polymers with constant radioactivity. Measurements of radioactivity of PVC solutions in tetrahydrofuran were made with a liquid counter.

CONCLUSIONS

- (1) Selective exchange of chlorine in PVC with SOCl₃²⁶ allows determination of allylic chlorine.
- (2) SOCl₂ causes dehydroclorination of Cl_T structures in PVC.
- (3) Chlorine in the vicinity of a conjugated double bond system is neither labelled with SOCl₂⁶ nor phenolysed; this type of chlorine has a reactivity close to that of a secondary chlorine.

REFERENCES

- A. A. Caraculacu and E. C. Bezdadea, Rev. Roumaine Chim. 14, 1171 (1967).
- 2. G. Bier and H. Kramer, Kunststoffe 46, 498 (1956).
- 3. E. C. Buruiana, G. A. Robila, E. C. Bezdadea, V. T. Barbînţa and A. A. Caraculacu, *The First Microsymposium of Macromolecular Chemistry*, Jassy, November 14-15th (1975).
- A. A. Caraculacu, E. C. Bezdadea, G. Istrate, J. Polym. Sci. 8, 1239 (1970).
- G. A. Robilă, E. C. Buruiană and A. A. Caraculacu, The First Microsymposium of Macromolecular Chemistry, Jassy, November 14-15th, (1975); Europ. Polym. J., in press.